Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the unlimited-elements-for-elementor domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/viraskco/public_html/wp-includes/functions.php on line 6121

Notice: Function _load_textdomain_just_in_time was called incorrectly. بارگذاری ترجمه برای دامنه aren زودتر از حد مجاز فراخوانی شد. این معمولاً نشان‌دهندهٔ اجرای کدی در افزونه یا پوسته است که خیلی زود اجرا شده است. ترجمه‌ها باید در عملیات init یا بعد از آن بارگذاری شوند. Please see Debugging in WordPress for more information. (این پیام در نگارش 6.7.0 افزوده شده است.) in /home/viraskco/public_html/wp-includes/functions.php on line 6121
هوش مصنوعی و شناسایی نقاط پرخطر حریق - ویرا سگال کارو

هوش مصنوعی و شناسایی نقاط پرخطر حریق

هوش مصنوعی و شناسایی نقاط پرخطر حریق

محققان استنفورد راهی برای ردیابی و پیش بینی مناطق خشک و نقاط پر خطر ، با استفاده از هوش مصنوعی

و یادگیری ماشین و تصـــاویر مـــاهواره ای پیـدا کرده اند . در حال حاضر نحوه آزمایش جنگل ها و گلخانه ها

برای حساسیت به آتش سوزی با جمع آوری دستــی شاخه هــا و شاخ و برگ و آزمایش میزان آب آنها است .

که دقیق و قابل اعتماد است ، اما بدیهی است که بسیار کار دشـــواری است . اما خوشبختانه بــا استفاده از 

هوش مصنوعی و الگوریتم های یادگیری ماشینی می توان بر این مشکل قلبه کرد.

چگونه هوش مصنوعی نقاط پر خطر را شناسایی می کند؟

مـــاهواره های Sentinel و Landsat آژانس فضــایی اروپــا یک مجموعه تصویری از سطح زمین راگــــردآوری

کرده اند که می تواننـد مـنـبـع ثـانویه ای بـــرای ارزیابی خطر آتش سوزی باشند . این اولین تلاش بـــرای ایجاد این

نـوع مـشـاهـدات از تصـاویر مـداری نیست ، اما تلاش های قبلی به اندازه گیری های بصری “بسیــار خــاص سایت”

وابسته بودند ، به این معنی که روش تجزیه و تحلیل بسته به مکان متفاوت بود. ایـن راهـکـار بـدون شـکاف است

امـا هـنـوز هـم مـقـیـاس کـردن آن سخـت است. پیشـرفتی کـه تیم اسـتـنـفـورد از آن بـهـره گـرفتـه ، مـاهـواره های

Sentinel “رادار دیـــافراگم مصنوعی” هستنـــد کـــه مـــی توانند پوشش جنگل را حذف  کرده و از سطح زیرین 

تصویر برداری کنند. این تیم این تصاویر جدید را که بطور منظم از سال 2016 جمع آوری شده اند ، به یــک مدل

یادگیری ماشین به همراه اندازه گیری دستی که توسط سرویس جنگل ایالات متحده انجام شده است ، تغذیه کردند.

آنها سپس عامل هوش مصنوعی حاصل را با آزمایـــش پیش بینی بر اساس داده های قدیمی که قبلاً جواب آنها را

می دانستند ، آزمایش کردند. و جواب به دست آمده دقیق بـــود ، اما بیشتر از همه در اسکراب ها ، یکی از رایج

ترین بیوم های غرب آمریکا و همچنین یکی از مستعدترین آتش سوزی هایی که در آمریکا وجود دارد.

ارسال نظر

آدرس ایمیل شما منتشر نخواهد شد.