کارایی  بالا

کارایی بالا

با تکیه بر ایسن دست از فناوری ها می توان کار های بسیار زیاد و خسته کننده ای که برای انسان دشوار است را به ماشین ها واگذار کرد
رسانه های اجتماعی

رسانه های اجتماعی

با استفاده از این فناوری ها رسانه های اجتماعی می توانند مطالبی را که شما به آن علاقه دارید به شما نشان دهند
خودرو های خودران

خودرو های خودران

استفاده از تکنولوژیدر خودرو های خودران قابلیت های زیادی را خودرو اضافه می کند.
دستیار های مجازی

دستیار های مجازی

برای اینکه این دستیاران مجازی بتوانند به شما خدمات ارائه دهند بدون شک به فناوری یادگیری عمیق و یادگیری ماشینی نیاز دارند.

امروزه به دلیل فناوری‌های محاسباتی جدید، یادگیری ماشینی شبیه یادگیری ماشینی گذشته نیست. این نظریه از تشخیص الگو و این نظریه که رایانه ها می توانند بدون برنامه ریزی برای انجام وظایف خاص یاد بگیرند، زاده شد. محققان علاقه مند به هوش مصنوعی می خواستند ببینند آیا رایانه ها می توانند از داده ها یاد بگیرند یا خیر. جنبه تکراری یادگیری ماشین مهم است، زیرا وقتی مدل‌ها در معرض داده‌های جدید قرار می‌گیرند، می‌توانند به طور مستقل سازگار شوند. آنها از محاسبات قبلی یاد می گیرند تا تصمیمات و نتایج قابل اعتماد و قابل تکراری تولید کنند. این علمی است که جدید نیست – اما علمی است که شتاب تازه ای به دست آورده است.
در حالی که بسیاری از الگوریتم‌های یادگیری ماشین برای مدت طولانی وجود داشته‌اند، توانایی اعمال خودکار محاسبات پیچیده ریاضی روی داده‌های بزرگ – بارها و بارها، سریع‌تر و سریع‌تر – یک پیشرفت اخیر است.

چرا یادگیری ماشین مهم است؟

افزایش علاقه به این فناوری به دلیل همان عواملی است که داده کاوی و تجزیه و تحلیل بیزی را بیش از همیشه محبوب کرده است. مواردی مانند افزایش حجم و تنوع داده‌های موجود، پردازش محاسباتی ارزان‌تر و قدرتمندتر و ذخیره‌سازی داده‌های مقرون‌به‌صرفه.

همه این موارد به این معنی است که امکان تولید سریع و خودکار مدل‌هایی وجود دارد که می‌توانند داده‌های بزرگ‌تر و پیچیده‌تر را تجزیه و تحلیل کنند و نتایج سریع‌تر و دقیق‌تری ارائه دهند – حتی در مقیاس بسیار بزرگ. و با ساخت مدل‌های دقیق، یک سازمان شانس بیشتری برای شناسایی فرصت‌های سودآور – یا اجتناب از خطرات ناشناخته دارد.

یادگیری ماشین چگونه کار می کند؟

مشابه نحوه کسب دانش و درک مغز انسان، کامپیوتر برای درک موجودیت‌ها، حوزه‌ها و ارتباطات بین آنها به ورودی‌هایی مانند داده‌های آموزشی یا نمودارهای دانش متکی است. با تعریف نهادها، یادگیری عمیق می تواند آغاز شود.

فرآیند این کار با مشاهدات یا داده هایی مانند مثال ها، تجربه مستقیم یا دستورالعمل آغاز می شود. به دنبال الگوهایی در داده ها می گردد تا بعداً بتواند بر اساس مثال های ارائه شده استنتاج کند. هدف اصلی ML این است که به کامپیوترها اجازه دهد بدون دخالت یا کمک انسان به طور مستقل یاد بگیرند و بر اساس آن اقدامات را تنظیم کنند.

یادگیری ماشینی به طور گسترده پذیرفته شده است

یادگیری ماشینی علمی تخیلی نیست. در حال حاضر به طور گسترده توسط مشاغل در تمام بخش ها برای پیشبرد نوآوری و افزایش کارایی فرآیند استفاده می شود. در سال 2021، 41 درصد از شرکت‌ها در نتیجه همه‌گیری همه‌گیر، به گسترش هوش مصنوعی خود سرعت دادند. این تازه واردان به 31 درصد از شرکت‌هایی می‌پیوندند که قبلاً هوش مصنوعی در حال تولید دارند یا به طور فعال فناوری‌های هوش مصنوعی را اجرا می‌کنند.

امنیت داده: مدل‌های یادگیری ماشینی می‌توانند آسیب‌پذیری‌های امنیتی داده‌ها را قبل از تبدیل شدن به نقض شناسایی کنند. با نگاهی به تجربیات گذشته، مدل‌های یادگیری ماشینی می‌توانند فعالیت‌های پرخطر آینده را پیش‌بینی کنند، بنابراین می‌توان ریسک را به طور فعال کاهش داد.
امور مالی: بانک ها، کارگزاری های تجاری و شرکت های فین تک از الگوریتم های یادگیری ماشین برای خودکارسازی معاملات و ارائه خدمات مشاوره مالی به سرمایه گذاران استفاده می کنند. بانک آمریکا از یک ربات چت به نام اریکا برای خودکارسازی پشتیبانی مشتری استفاده می کند.
مراقبت های بهداشتی: ML برای تجزیه و تحلیل مجموعه های عظیم داده های مراقبت های بهداشتی برای تسریع در کشف درمان ها و درمان ها، بهبود نتایج بیمار، و خودکارسازی فرآیندهای معمول برای جلوگیری از خطای انسانی استفاده می شود. به عنوان مثال، واتسون IBM از داده کاوی برای ارائه داده‌هایی به پزشکان استفاده می‌کند که می‌توانند از آنها برای شخصی‌سازی درمان بیمار استفاده کنند.
تشخیص تقلب: هوش مصنوعی در بخش مالی و بانکی برای تجزیه و تحلیل مستقل تعداد زیادی از تراکنش ها برای کشف فعالیت های تقلبی در زمان واقعی استفاده می شود. شرکت خدمات فناوری Capgemini ادعا می کند که سیستم های تشخیص تقلب با استفاده از یادگیری ماشینی و تجزیه و تحلیل زمان بررسی تقلب را تا 70 درصد به حداقل می رساند و دقت تشخیص را تا 90 درصد بهبود می بخشد.
خرده فروشی: محققان و توسعه دهندگان هوش مصنوعی از الگوریتم های ML برای توسعه موتورهای توصیه هوش مصنوعی استفاده می کنند که بر اساس انتخاب های گذشته خریداران و همچنین داده های تاریخی، جغرافیایی و جمعیتی، پیشنهادات محصول مرتبط را ارائه می دهند.